Image analysis software for nanometer line patterns from Block copolymers DSA (and not only…)

At last week’s SPIE Advanced Lithography (San Jose, CA), ICN2 scientists announced pioneering software for line pattern image analysis. The presented methodology is a unique tool developed to address the gap existent in dimensional metrology of sub-10 nm line patterns. This is a methodology to quantify the critical dimensions and defect density of line arrays in regimes where optical inspection cannot reach. The software has been developed by the ICN2 Phononic and Photonic Nanostructures Group, led by ICREA Professor C. M. Sotomayor Torres, in collaboration with University College Cork (Ireland), led by Professor A. Amann.

Directed self-assembly (DSA) of block copolymers (BCPs), a method already compatible with existing electronic technologies, has gained the attention of the lithography community as a most promising avenue to advance miniaturisation. First-generation DSA is on the verge of entering high-volume manufacturing by successfully increasing sub-20 nm contact hole resolution in a cost-effective manner. DSA for reproducible sub-10 nm pitch sizes is a hot research topic in Asia, Europe, and the Americas.

One of the main challenges for R&D, material suppliers, or manufacturers is specialised metrology for DSA-based lithography. It is here where the method invented by ICN2/UCC is expected to bring decisive advantages in the characterization of nanometer line patterns, one of the key elements in circuit manufacturing. The presented methodology is state-of-the-art, user-friendly, and customizable software successfully addressing this issue, complimentary to conventional optical inspection tools.

This R&D project is in validation stage and is available for development in joint ventures with partners interested in materials, metrology, manufacturing, and applications involving DSA.

Download here the software’s informative brochure

One comment

  1. Pingback: Line pattern analysis feature on Nanotech-Now | Self-assembling phononic and photonic nanostructures

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s